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ABSTRACT

The rate at which a facetted tetragonal cavity of nonequilibrium shape approaches a
cubic equilibrium (Wulff) shape via surface diffusion was modelled. The shape relaxation
rate of a facetted “stretched cylinder” was also modelled. For the first geometry, only an
approximate solution based on linearizing the mean potential difference between the
source and sink facets was obtained. For the stretched cylinder, both an approximate and
an exact solution can be obtained; the approximate solution underestimates the evolution
rate by a factor of ≈2. To assess the applicability of the models, nonequilibrium shape
pores of identical initial geometry (≈20 µm × 20 µm × 0.5 µm) were introduced into
(0001),   {101 2},   {112 0} , and   {101 0}  surfaces of sapphire single crystals using
microfabrication techniques, ion-beam etching and hot-pressing. The large
(≈20 µm × 20 µm) faces of the pore are low-index surfaces whose nature is dictated by
the wafer orientation. A series of anneals was performed at 1900°C, and the approach of
the pore shape to an equilibrium shape was monitored. The kinetics of shape evolution
are highly sensitive to the crystallographic orientation and stability of the low-index surface
that dominates the initial pore shape. The measured variations of the pore aspect ratio
were compared to those predicted by the kinetic model. The observations suggest that
when the initial bounding surface is unstable, shape relaxation may be controlled by
diffusion. However, surface attachment limited kinetics (salk) appear to play a major
role in determining the pore shape evolution rate in cases where the initial bounding
surfaces have orientations that are part of the Wulff shape.
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Introduction

The rate of microstructural changes resulting from the displacement of crystal interfaces can be

limited either by the rate at which mass diffuses from a source to a sink, or by the rate at which mass is

accommodated at the sink or released at the source. The surface or interface structure will determine the

density and nature of sites at which atom addition or removal can occur, and thereby, the maximum mass

arrival or removal rate that can be accommodated. A low site density is expected for coherent grain

boundaries, and for surfaces that are facetted. For facetted surfaces, atomic-height ledges/steps that

provide preferred addition/removal sites can arise either due to physical imperfections in the surface

(e.g., scratches), structural imperfections in the crystal (e.g., a screw dislocation), or due to a disparity

between the macroscopic surface orientation and the orientation of the facet (a “miscut”). When the

initial ledge density is low, or ledges are progressively removed, the rate of microstructural change in

facetted systems may ultimately depend upon the rate at which critical-size atomic-height patches of

atoms (or atomic-depth cavities) can form by nucleation on the migrating facet. In this paper, the term

surface-attachment-limited kinetics (salk) is used to describe cases where any of the spectrum of

interfacial processes limits the rate of microstructural change. Ideally, it would be of interest to determine

which specific interfacial process yields interfacial-reaction-rate-limited evolution or salk. A more modest

goal is to determine the conditions under which salk impacts the rate of microstructural change.

Recently, two approaches to modelling surface-diffusion-controlled shape changes of fully

facetted 2-d features [1, 2] were used to predict pore shape change rates in alumina [3, 4]. The first [2], an

approximate approach, assumes that the mass flux across a specific facet edge is proportional to the

difference in the mean potentials on the adjoining facets scaled by an appropriate transport distance. The

facet displacement rate is dictated by the total mass (volume) arrival rate and the facet area. The second,

more refined approach stipulates that the divergence of the flux must be constant everywhere on a facet in

order for the facet to advance or recede uniformly, and calculates the spatial variation of the potential on

the facet consistent with this requirement and other boundary conditions [1]. In a prior paper [4], the

predictions of these two 2-d models are shown to agree to within a factor of 1.5 when consistent values of
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materials parameters are used, and modelling errors are corrected.✝  Comparison of the (2-d model)

predictions [4] with the results of experimental work [3] examining discrete, i.e., 3-d features suggested

that observed evolution rates were influenced by interfacial reaction rates (salk) and not limited by the

rate of surface diffusion.

The present paper addresses this issue by extending the modelling from 2-d to 3-d geometries,

introducing an experimental technique that provides for more controlled study of pore shape evolution,

and comparing the observed evolution characteristics with those predicted for surface-diffusion-

controlled evolution.

Predictions of the rate of shape change of discrete facetted features based on linearizing the

potential difference between adjacent facets are presented. Where possible, the predictions of this

approximate approach are compared to those of the more exact approach. The validity of using a 2-d

model to interpret 3-d evolution characteristics is assessed.

The experimental study exploits methods [5] applied in prior model experiments examining

microstructural evolution in ceramics, and the high-temperature properties of surfaces and interfaces in

alumina [5-13]. The sequential application of microlithographic techniques, ion beam etching, and hot

pressing to sapphire substrates of controlled surface orientation can yield intragranular arrays of pores of

controlled size and shape. The pores have much greater lateral (parallel to the original surface) extent than

depth. By systematically varying the substrate orientation, internal cavities of identical shape but bounded

in large part by different crystallographic planes of sapphire can be produced. When samples containing

these (highly) nonequilibrium shape pores are annealed, the resulting shape change rates will depend upon

whether the process is rate-limited by diffusion or dictated by salk. Since sapphire is transparent, shape

changes can be tracked (nondestructively) by optical microscopy, and the effect of the orientation of the

dominant bounding surface on the evolution rates can be assessed. After annealing is complete, the pores

can be exposed by polishing; this procedure is simplified because the processing leads to planar arrays of

pores. Since the substrate surface orientation and directions within the surface are known, scanning

                                                                        
✝  The nature of the errors and inconsistencies are discussed in reference [4]. A short note providing further detail is also in
preparation.
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electron microscopy (sem) and the atomic force microscope (afm) can be used to characterize the cavity

geometry and index the facets that formed during annealing. This information provides some insight as to

the nature of the stable surfaces under the annealing conditions, and is helpful in interpreting the kinetic

observations.

The comparison of model predictions and experimental results suggests that although shape

relaxation may initially be controlled by diffusion, surface-attachment-limited kinetics (salk) play a major

role in determining the pore shape evolution rate when the dominant initial bounding surfaces are part of

the Wulff shape. The results of the present study also proved useful in guiding the design of experiments

aimed at determining the Wulff shape of doped and undoped aluminas. The results of these studies will

be reported separately [14-16].

Modelling of Pore Shape Changes

This section addresses surface-diffusion-controlled pore shape changes. Two geometries are

considered. The first is that of a facetted tetragonal pore that relaxes to a cubic equilibrium shape; this

shape change approaches that in the experiments performed. However, for this shape, only an

approximate solution is possible. As a result, we also consider the relaxation of a coin-shaped pore to a

more equiaxed cylindrical “plug”. For this geometry, both an exact solution based on a position-dependent

potential, and an approximate solution based on linearizing the difference in mean potentials on adjoining

surfaces can be obtained. The results show that, as in the 2-d cases considered previously [4], the

difference between these solutions is small.

Analysis of a Stretched Cube

The geometry of interest is that of a particle (or cavity) with dimensions 2l2 × 2l2 × 2l1, with l2

initially much greater than l1, as illustrated in Figure 1. The volume of the particle Vp is conserved during

the shape change. All facets undergo uniform normal displacements, and the four facets of area 4l1l2 are

assumed to move at the same rate, so that the square cross section is conserved during the process. The
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surface energy of the two square facets of area 4    l2
2 , and normal to l1 is denoted γ1. These square facets are

referred to as type 1 facets. The surface energy of the four facets of area 4l1l2 is denoted γ2. These four

facets are subsequently referred to as type 2 facets.

Proceeding in a manner analogous to that used in the companion paper [4], we develop

expressions for the driving force for mass flow and link the driving force to a rate of shape change. The

volume conservation condition, 
    
Vp = 8l1l2

2 = constant , relates the normal displacements of the type 1 and

type 2 facets

    
dl1 =−

2l1
l2

dl2 (1)

When   γ1 = γ 2 =γ , and the equilibrium shape is a cube, the more general expression for the change in

the total surface energy of the particle/cavity reduces to

    
dΦ( )total

= 8 γ 2l2 −γ 1
l2
2

l1

 

  
 

  dl1 = 8γ l2 1 −
l2
l1

 
  

 
  dl1 (2)

When     l2 > l1 , the energy change is negative when     dl1 > 0 ; the driving force goes to zero when     l1 = l2 .

Equating the total volume swept when the two type 1 facets each undergo a displacement dl1,     8l2
2dl1 , to

the product of the number of moles transferred dn and the molar volume,   V , and substituting into

Eqn. (2), yields the differential free energy change

    
(dΦ)2 →1 =γV •

1

l2
−

1

l1

 

 
  

 

 
  dn (3)

The ratio of     (dΦ)2 →1  and dn defines a chemical potential difference, and thus,

    

(dΦ)2 →1

dn
= ∆ µ 2 →1 = µ 1 − µ 2 =γV •

1

l2
−

1

l1

 

 
  

 

 
  (4)

The identical result can be obtained using the concept of weighted mean curvature (wmc) [17].

The displacement of a facet of type 1 by an amount     δ l1  extends all four of the orthogonal type 2 facets,

and increases the area of each by     2l2 •δ l1 . The total surface energy change is thus     8l2γ 2 •δ l1 . The volume
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swept by the displacement is     4l2
2 •δ l1 . The wmc of facet 1 is simply the limit of the energy change per

volume swept as the volume swept goes to zero, and is thus given by

    
wmc1 =

8l2γ 2 •δ l1
4l2

2 •δ l1
=

2γ 2

l2
(5)

A displacement of a type 2 facet, extends surfaces of both type 1 and type 2 . The total surface area and

total surface energy changes for the type 1 facets due to a displacement of a single type 2 facet by     δ l2  are

    2 • 2l2 • δ l2  and     4l2γ 1 •δ l2 , respectively. The extension of the two adjoining type 2 facets contributes

surface area and surface energy changes of     2 • 2l1 • δ l2 , and     4l1γ 2 •δ l2 , respectively. The volume swept by

the displacement is     2l1 •2l2 • δ l2 . Thus,

    
wmc2 =

4 l2γ1 + l1γ 2( )•δ l2
4l1l2 •δ l2

=
γ 1

l1
+

γ 2

l2
(6)

Converting to chemical potentials, and evaluating   ∆µ 2→1

      

∆µ 2→1 = µ 1 − µ 2 = µo +V wmc1( ) − µo +V wmc2( )
= V 

γ 2

l2
− γ1

l1

 

 
  

 

 
  

(7)

which reduces to Eqn. (4) when   γ1 = γ 2 =γ .

To develop a differential equation for the shape change rate, we again set the total mass arrival

rate on a type 1 facet equal to the sum of the mass arrival rates at the facet edges. As before [4], these flow

rates are dictated by the potential gradients at the facet edges. If we implicitly assume that the deposition

rate is uniform on the facet, the problem of determining the shape change rate reduces to one of

calculating or estimating the gradients at the facet edges. We apply the equation

    
Js( )2→1

= −
Ds

V kT
•

∆µ 2 →1

∆x2→1
(8)

with   ∆µ 2→1 = µ 1 − µ 2  equal to the difference in mean potential, Eqn. (7), and     ∆x2 →1  approximated as

    
1

2
l1 + l2( )  to estimate the edge flux. The choice of     ∆x2 →1  reflects the approximate distance between



Kinetics of Pore Shape Evolution M. Kitayama, T. Narushima and A. M. Glaeser

 6 

points on the adjoining facets at which the linearly varying potential equals the mean potential. The

volume swept by a facet of type 1 with area A1 (=    4l2
2 ), is denoted dV1, and related to the surface flux via

    dV1 = A1δ l1 = Js •δ s • L •Ω• dt (9)

where δs is the diffusion width or surface thickness, taken here to be equal to Ω1/3  where Ω is the atomic

volume, and L  is the total common or shared edge length between the interacting facets. Rearranging the

result, substituting Eqns. (7)and (8), and setting   γ1 = γ 2 =γ  gives

    

dl1
dt

=
2Ω4/3

l2
• J s =−

32Dsγ Ω4/3

V pkT

l1 − l2

l1 + l2

 

 
 
 

 

 
 
 

(10)

For the stretched cube, with     l2  set equal to 
    
(Vp /8 l1 )1/2 , one can solve for dt and integrate. This leads to

    

t − t0( )StrCube
= −

V pkT

32Dsγ Ω4/3

2 2 l1
3/2 + Vp

2 2 l1
3/2− Vp

 

 

 

 
 
 

 

 

 
 
 

l1
( t o)

l1
( t )

∫ dl1 (11)

Two solutions of different form can be obtained. The first is expressed in terms of a

hypergeometric function, 2F1, and has the form

    

t − t0( )StrCube
= −

VpkT

16Dsγ Ω4/3
•

1

2
l1
(t) − l1

(t0 )( )− l1
( t)• 2F1

2

3
, 1, 

5

3
,
2 2 • l1

( t)( )3/2

Vp

 

 

 
 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

−l1
(t0 )• 2F1

2

3
, 1, 

5

3
,
2 2 • l1

( t0)( )3/2

V p

 

 

 
 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

(12)

The second solution is
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t − t0( )
StrCube

= −
VpkT

32DsγΩ4/3
l1
(t ) − l1

(t 0 )( )

−
Vp

1/3
kT

24Dsγ Ω4/3

Vp

4
ln

l1
(t) − 1

2
V p

1/3 
  

 
  

 
  

 
  l1

(t)1/2
− 1

2
V p

1/3 
  

 
  

1/2 

 
  

 

 
  l1

(t0 )1/2
+ 1

2
V p

1/3 
  

 
  

1/2 

 
  

 

 
  

l1
(t0 ) − 1

2
Vp

1/3 
  

 
  

 
  

 
  l1

(t0 )1/ 2
− 1

2
V p

1/3 
  

 
  

1/2 

 
  

 

 
  l1

(t)1/2
+ 1

2
Vp

1/3 
  

 
  

1/2 

 
  

 

 
  

 

 

 
 
 
 
 
 

+
V p

8
ln

l1
(t0 )2 + 1

2
l1
(t0 )Vp

1/3
+ 1

2
Vp

1/3 
  

 
  

2 

 
  

 

 
  l1

(t 0) + 1

2
l1
(t 0)V p

1/3 
  

 
  

1/2

+ 1

2
Vp

1/3 

 
  

 

 
  l1

(t) − 1

2
l1
(t )Vp

1/3 
  

 
  

1/2

+ 1

2
Vp

1/3 

 
  

 

 
  

l1
(t)2 + l1

(t) 1

2
Vp

1/3 
  

 
  +

1

2
Vp

1/3 
  

 
  

2 

 
  

 

 
  l1

(t ) + 1

2
l1
(t )Vp

1/3 
  

 
  

1/2

+ 1

2
Vp

1/3 

 
  

 

 
  l1

(t0 ) − 1

2
l1
(t 0 )Vp

1/3 
  

 
  

1/2

+ 1

2
Vp

1/3 

 
  

 

 
  

+
3V p

4
arctan

1

3

4l1
(t 0)

Vp

1/3
+ 1

 

 

 
  

 

 

 
  

 

 

 
  

 

 

 
  

 

 

 
 
 

− arctan
1

3

4l1
(t )

Vp

1/3
+ 1

 

 

 
  

 

 

 
  

 

 

 
  

 

 

 
  

+ arctan
1

3

8l1
(t )

V p

1/3

 

 

 
  

 

 

 
  

1/2

+1

 

 

 
 
 

 

 

 
 
 

 

 

 
 
  

 

 

 
 
  

− arctan
1

3

8l1
(t 0)

Vp
1/3

 

 

 
  

 

 

 
  

1/2

+ 1

 

 

 
 
 

 

 

 
 
 

 

 

 
 
  

 

 

 
 
  

+ arctan
1

3

8l1
(t )

Vp
1/3

 

 

 
  

 

 

 
  

1/2

− 1

 

 

 
 
 

 

 

 
 
 

 

 

 
 
  

 

 

 
 
  

− arctan
1

3

8l1
(t0 )

Vp
1/3

 

 

 
  

 

 

 
  

1/2

− 1

 

 

 
 
 

 

 

 
 
 

 

 

 
 
  

 

 

 
 
  

 

 

 
 
 
 

 

 

 
 
 
 

(13)

Comparison with 2-D Simulation

Prior 2-d modelling [4] considered the rate at which a pore of rectangular cross section and

constant area Acs in the x-y plane, and infinite extent in the z-direction would adjust its shape by surface

diffusion. In the 3-d case, the areas of all bounding facets change during evolution; volume is conserved.

As a result, the evolution characteristics in 2-d and 3-d differ. Choi et al. [3], show that discrete submicron

size pores of nonequilibrium shape persist in sapphire after 50 h anneals at 1600°C; the 2-d analysis [4]

predicts that pores of such size should have a shape indistinguishable from the equilibrium shape after only

a few minutes. The results of the 3-d analysis, Eqns. (12) and (13), can be compared to their 2-d analogues

[4] to assess whether this is possibly a consequence of using a 2-d model to interpret kinetic data from

discrete 3-d cavities. Since Choi et al. [3] generated pores by crack healing, and the initial pore geometries

are not known, quantitative comparisons will assume an initial pore geometry matching that used in the
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experimental phase of the present study. Specifically, the cavities are assumed to be

20 µm × 20 µm × 0.5 µm. With 2l1 = 0.5 µm, and 2l2 = 20 µm,     Acs = 4l1l2 = 10−11  m 2 ,

    
Vp = 8l1l2

2 = 2 × 10−16  m3 , and the initial width-to-depth or aspect ratio Ra (=2l2/2l1) is 40.

Both the 2-d and 3-d solutions are derived by integrating an equation of the form

    

dl1

dt
=

Js •δ s • L •Ω
A1

=
Ω4/3 • L

A1
• −

Ds

V kT
•

∆µ 2→1

∆x2→1
(14)

With   γ1 = γ 2 =γ , it follows that in both cases, the time required to reach a given aspect ratio Ra from a

common initial value at some fixed temperature will be proportional to     (kT /D sγ Ω4/3). Thus, the ratio of

the times required for a given aspect ratio change at fixed temperature will be independent of the specific

values of   Ds  and γ  assumed. The time ratio will instead depend upon the relative values of the chemical

potential gradient, the relative edge lengths across which mass flows onto the facet, and the relative

displacements that lead to a given change in aspect ratio.

At the onset of evolution, the chemical potential gradient for the 2-d and 3-d cases are identical,

and thus, differences in evolution rates reflect differences in the factor L . Initially, facets of type 1 in the

3-d stretched cube have twice the edge length of the 2-d stretched square, and thus twice the mass arrival

rate; it follows that initially     (dl1 /dt)3D = 2(dl1 / dt)2 D . However, the aspect ratio of the stretched cube

does not change at twice that of the stretched square because the facet displacements required to achieve

a given change of aspect ratio differ in the two cases. This can be seen by expressing l1 in terms of Ra for

both the 2-d and 3-d cases

    
l1
2D =

Acs

4Ra

 

 
  

 

 
  

1/2

l1
3D =

Vp

8Ra
2

 

 
  

 

 
  

1/3

(15)

The dependence of l1 on Ra for the initial geometry of interest is shown in Figure 2. Except at the initial

point,     l1
2D ≠ l1

3 D , and the facet displacements for a given change of aspect ratio,     ∆l1
2 D  and     ∆l1

3 D, are also

not equal. For small displacements, the differences are more easily seen by examining the ratio of the

displacements, also plotted in Figure 2. The ratio of     ∆l1
3 D / ∆l1

2D  approaches 1.33 when Ra approaches
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the initial value of 40.✛  Although the total displacement is thus larger for the 3-d case, this is offset by the

greater edge length, and thus, one expects that during the early stages of evolution, the time ratio,     t3D /t2D

for small changes of aspect ratio will approach 0.667. The stretched cube evolves more rapidly.

At later stages of evolution, the difference in the displacement requirements for specific aspect

ratio changes, and the associated differences in the values of l1 and l2 have multiple effects on the relative

evolution rates. For the 2-d case, the edge length L remains constant, while for the 3-d case it decreases

with time. Although the expressions for ∆µ  for the 3-d and 2-d cases have an identical functional form,

Eqn. (7), the comparison in Figure 2 shows that the values of l1 and l2 differ at fixed Ra. As a result, ∆µ 

will not be the same at fixed Ra. This is apparent when ∆µ  is expressed in terms of Ra, and the area

conservation and volume conservation conditions are invoked, yielding

      

∆µ = γV 
1
l2

− 1
l1

 
  

 
  = γV 1 − Ra( ) 1

l2

 
  

 
  

∆µ = γV 1 − Ra( ) 4l1
Acs

 
  

 
  (2 -d case)

∆µ = γV 1 − Ra( ) 8l1
Vp

 

 
 

 

 
 

1/2

(3-d case)

(16)

The net effect of the decreasing value of L , the relatively lower and decreasing value of ∆µ , and the

relatively higher and increasing value of   ∆x  for the 3-d case is that as Ra approaches the equilibrium value,

the relative rates of evolution reverse, and the stretched square (2-d) ultimately evolves more rapidly. This

is illustrated in Figure 3. At aspect ratios near 40, the ratio (t3D/t2D) is ≈0.67, whereas when the aspect

ratio is 1.01 (near the equilibrium value) (t3D/t2D) is ≈5.5. We note that until Ra becomes   ≤ 3 , the error

is no more than a factor of two. Although the 2-d analysis underestimates the evolution time required to

reach a near-equilibrium value of Ra, the evolution rates suggested by the pore geometries in the study of

Choi et al. [3] remain much lower than would be expected for surface-diffusion-controlled evolution.

                                                                        
✛  This limiting ratio of 4/3 is a consequence of the assumed geometry. This can be seen by evaluating     dl 1 /dRa( )  for both the

2-d and 3-d cases, and examining the ratio when   Ra  assumes its initial value. It follows that the ratio of the evolution times
must also approach a limiting value of 2/3 as   Ra  approaches its initial value.
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Analysis of a Coin-Shaped Cavity

We now consider the shape relaxation of a cylindrical disk, as illustrated in Figure 4, to a more

nearly equiaxed cylindrical plug. The radius of the cylinder is taken to be r = l2, and the depth of the disk is

taken to be 2l1. The aspect ratio, Ra, defined as the width w divided by the depth d, is thus again l2/l1. For

the purpose of defining driving forces for the shape change, the surface energy of the large circular face of

area A1 is assumed to be γ1, and that of the edge face is γ2.

The calculation of the driving force for transfer of mass from the edge face to the circular face

involves determining the mean chemical potential on the two surfaces. This can be done by differential

geometry or by determining the weighted mean curvature of the mass sink (face 1) and the mass source

(face 2). In view of the equivalence of these approaches, we focus here on a treatment in terms of wmc .

Adding mass to the top face, face 1 , extends the edge or perimeter face. If one adds volume

    πr2 •δ l1 = π l2
2•δ l1 to face 1, the surface area of the edge face increases by     2π r• δ l1 = 2π l2•δ l1, and the

surface energy increase is     2π l2•γ2 •δ l1 . The weighted mean curvature of face 1  is therefore given by

    
wmc1 =

2π l2• γ2 • δ l1

π l2
2•δ l1

=
2γ2

l2
(17)

Adding mass to the edge face, face 2 , involves the extension of the top and bottom faces, and

enlargement of the perimeter. If one adds volume     2l1 •2π r•δr = 4π l1l2 •δ l2 , both the top and bottom

surfaces increase their area by     2π l2 •δ l2 , leading to a combined surface energy change of     4π l2•γ1 •δ l2 .

The area of the perimeter increases by     4π l1•δ l2 and the resulting surface energy change is     4π l1•γ2 •δ l2 .

As a result, the weighted mean curvature of face 2  is

    
wmc2 =

4π l2• γ1 • δ l2+ 4π l1• γ2 •δ l2
4π l1l2 •δ l2

=
γ1

l1
+

γ 2

l2
(18)

It follows that the driving force for mass transfer from face 2  to face 1 is given by

      

∆µ 2→1 = µ 1 − µ 2 = µo +V wmc1( ) − µo +V wmc2( )
= V 

γ 2

l2
− γ1

l1

 

 
  

 

 
  

(19)
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To develop a rate equation describing the shape change, we again apply Eqn. (8) with

  ∆µ 2→1 = µ 1 − µ 2  now defined by Eqn. (19), and     ∆x2 →1  again approximated as 
    
1

2
l1 + l2( )  to determine

the edge flux. With   γ1 = γ 2 =γ  the flux per unit edge length takes the form

    
Js( )2→1

=
2Dsγ

kT
⋅

l2 − l1
l1l2 l1 + l2( )

 

 
 
 

 

 
 
 (20)

For displacement of the circular face, the volume swept by the “top” face of area A1 (=    πl2
2 ) due to a

displacement     δl1 is denoted dV1, and related to the surface flux via

    dV1 = A1δ l1 = J s •δ s • L•Ω• dt (21)

with L  in this case being     2πl2 . With these substitutions, rearrangement yields

    

dl1
dt

=
2Ω4/3

l2
• J s =

4Dsγ Ω4/3

kT
•

1

l2

l2 − l1
l1l2 l1 + l2( )

 

 
 
 

 

 
 
 =

8πDsγ Ω4/3

VpkT

l2 − l1
l1 + l2( )

 

 
 
 

 

 
 
 (22)

The volume conservation condition, 
    
Vp = constant = 2π l2

2l1  can be used to re-express     l2  in terms of 
  
Vp

and     l1. Rearrangement then yields

    

t − t0( )StrCyl
=

VpkT

8πDsγ Ω4/3

Vp + 2π l1
3( )1/2

Vp − 2π l1
3( )1/2

 

 

 

 
 
 

 

 

 
 
 

l1
( t o )

l1
( t)

∫ dl1 (23)

The result is clearly similar to that given as Eqn. (11), and will have a similar solution. Numerical

differences will arise due to the difference in the numerical coefficient, and also because the difference in

shape will lead to different values of     l1 relative to those for the stretched cube at identical values of Ra.
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t − t0( )StrCyl
= −

VpkT

8πDsγ Ω4/3
l1
(t ) − l1

(t 0 )( )

−
41/3Vp

4/3kT

8π 4/3Dsγ Ω4/3

1
3

ln

l1
(t) −

Vp

2π
 
  

 
  

1/3 

 
  

 

 
  l1

(t)1/2
−

Vp

2π
 
  

 
  

1/6 

 
  

 

 
  l1

(t0 )1/2
+

Vp

2π
 
  

 
  

1/6 

 
  

 

 
  

l1
(t0 ) −

Vp

2π
 
  

 
  

1/3 

 
 
 

 

 
 
 l1

(t0 )1/2
−

Vp

2π
 
  

 
  

1/6 

 
 
 

 

 
 
 l1

(t)1/2
+

Vp

2π
 
  

 
  

1/6 

 
 
 

 

 
 
 

 

 

 
 
 
 
 
 
 

+ 1
6

ln

l1
(t0 )2 + l1

(t0 ) V p

2π
 

  
 

  

1/3

+
V p

2π
 

  
 

  

2/3 

 
 
 

 

 
 
 l1

(t0 ) + l1
(t0 )1/2 Vp

2π
 

  
 

  

1/6

+
Vp

2π
 

  
 

  

1/3 

 
 
 

 

 
 
 l1

(t) − l1
(t)1/2 Vp

2π
 

  
 

  

1/6

+
Vp

2π
 

  
 

  

1/3 

 
 
 

 

 
 
 

l1
(t)2 + l1

(t) Vp

2π
 
  

 
  

1/3

+
Vp

2π
 
  

 
  

2/3 

 
 
 

 

 
 
 

l1
(t) + l1

( t)1/2 Vp

2π
 
  

 
  

1/6

+
Vp

2π
 
  

 
  

1/3 

 
 
 

 

 
 
 

l1
(t0 ) − l1

(t0 )1/2 Vp

2π
 
  

 
  

1/6

+
Vp

2π
 
  

 
  

1/3 

 
 
 

 

 
 
 

                      +
1

3

 
  

 
  arctan

1

3

16π
V p

 

 
 

 

 
 

1/3

l1
(t0 ) + 1

 

 
 
 

 

 
 
 

 

 

 
 

 

 

 
 

 

 

 
 
 

− arctan
1

3

16π
Vp

 

 
 

 

 
 

1/3

l1
(t) + 1

 

 
 
 

 

 
 
 

 

 

 
 

 

 

 
 

                      + arctan
1

3

128π
V p

 

  
 

  

1/3

l1
(t)

 

 
 
 

 

 
 
 

1/2

+ 1

 

 

 
 
 

 

 

 
 
 

 

 

 
 
 

 

 

 
 
 

− arctan
1

3

128π
Vp

 

  
 

  

1/3

l1
(t0 )

 

 
 
 

 

 
 
 

1/2

+ 1

 

 

 
 
 

 

 

 
 
 

 

 

 
 
 

 

 

 
 
 

                      + arctan
1

3

128π
V p

 

 
 

 

 
 

1/3

l1
(t)

 

 
 
 

 

 
 
 

1/2

− 1

 

 

 
 
 

 

 

 
 
 

 

 

 
 
 

 

 

 
 
 

− arctan
1

3

128π
Vp

 

 
 

 

 
 

1/3

l1
(t0 )

 

 
 
 

 

 
 
 

1/2

− 1

 

 

 
 
 

 

 

 
 
 

 

 

 
 
 

 

 

 
 
 

 

 

 
 
 
 

 

 

 
 
 
 

(24)

When the times required for a stretched cylinder and a stretched cube of equal volume and identical

initial aspect ratio to evolve to a constant new value of Ra are compared, they are in a constant ratio

of 1.38. This result can be obtained most readily by using Eqns. (10) and (22) to evaluate 
    
(dRa /dt)StrCyl

and     (dRa /dt)StrCube , respectively, yielding

    

dRa

dt

 
 
 

 
 
 

StrCube

=− 3
2

•
Vp

8

 

 
  

 

 
  

−1/3

• Ra
5/3 •

dl1
dt

 
 
 

 
 
 

StrCube

= 96•
Vp

4/3Dsγ Ω4/3

kT
•Ra

5/3 •
1 − Ra

1 + Ra

dRa

dt

 
 
 

 
 
 

StrCyl

= − 3

2
•

Vp

2π

 

 
  

 

 
  

−1/3

• Ra
5/3 •

dl1
dt

 
 
 

 
 
 

StrCyl

= 6•(2π )4/3 •
Vp

4/3Dsγ Ω4/3

kT
•Ra

5/3 •
1 − Ra

1 + Ra

(25)
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The 
    
(dRa /dt)StrCyl :    (dRa /dt)StrCube  ratio is a constant, giving 

    
(dtStrCyl / dtStrCube) =16 / (2π)4/3 = 1.380 .

That this ratio is of the order of unity is consistent with the observations in the 2-d case [4]; the times for

evolution are relatively insensitive to the detailed geometry of the evolving entity. Thus, even though

cavities in a real material will not assume either of the shapes considered, a comparison of experimental

results with these predictions should nonetheless be useful.

A key feature of the stretched cylinder geometry is that it is possible in this case to define the form

that the potential must take such that the divergence of the surface flux is constant everywhere on a

particular facet. As in the 2-d case, one solves for the form of the potential that leads to a continuous

potential and gradient in the potential at the facet edge, and sets the mean potential on a facet equal to the

value implied by its weighted mean curvature. Such an analysis then allows the gradient in potential at the

facet edge, and thereby the mass arrival and shape adjustment rates to be compared with those given by

the linearized potential approach.

The assessment of the potential variation on the circular and edge faces follows the method used

in the companion paper [4]. The general form of the potential variation for the circular faces (1), and edge

faces (2) is

    µs
(1)(r) = c1r2 + c 2r + c3 µs

(2) (z ) = d1z2 + d2z + d3 (26)

where the center of the circular face is r = 0, and the center of the edge is taken as z = 0. Due to the

symmetry about r = 0 and z = 0, the constants c2 and d2 must be zero. The constants c3 and d3 can be

evaluated by integrating the expressions, and setting the mean potential on the surfaces equal to the value

implied by the weighted mean curvature, Eqn. (19). When Ds is assumed to be the same on all facets,✫

the slope is continuous at the facet edge (    r = l2 ,  z =± l1 ) allowing c1 and d1 to be related to one another.

Finally, equality of the potential at the facet edge allows the final unknown to be defined. The resulting

expressions for the chemical potentials are:

                                                                        
✫ Yu and Hackney [18] treated the shape relaxation of a 2-d rectangular particle for which the surface diffusivity was assumed
to differ on the adjoining facets. In such cases, the flux at the facet edge must be balanced, and the gradient will change
discontinuously at the facet junction.



Kinetics of Pore Shape Evolution M. Kitayama, T. Narushima and A. M. Glaeser

 14 

      

µs
(1 ) = 6V 

l2γ 1 − l1γ 2

l1l2 3l2
2 + 4l1l2( )

 

 

 
 
 

 

 

 
 
 

r2 −
l2
2

2

 

 
 
 

 

 
 
 

+ µo + V 
2γ 2

l2

 

 
 

 

 
 

µs
(2 ) = −6V 

l2γ 1 − l1γ 2

l1
2 3l2

2 + 4 l1l2( )
 

 

 
 
 

 

 

 
 
 

z2 − l1
2

3

 

 
 
 

 

 
 
 

+ µo + V 
γ1

l1
+ γ 2

l2

 

 
 

 

 
 

(27)

The chemical potential gradient at the edge of the circular face can be evaluated, and compared

with that obtained using the linearized potential approach with     ∆x2 →1  set equal to 
    
1

2
l1 + l2( ) . Using

Eqn. (27), and evaluating     dµs
(1) / dr  at     r = l2  gives

    

dµs
(1)

dr

 

  
 

  
r=l2

( pp )

= 3V 
l2γ 1 − l1γ 2

l1l2 l1 + 3

4
l2( )

 

 

 
 
 

 

 

 
 
 

(28)

for the parabolic potential (pp). The equivalent result for the linearized potential (lp) approximation is

    

dµs
(1)

dr

 

  
 

  
r=l2

(lp )

= −
∆µ 2→1

∆x
= 2V 

l2γ1 − l1γ 2

l1l2 l1 + l2( )
 

 
 
 

 

 
 
 

(29)

The ratio of the gradients thus depends upon the aspect ratio, and is given by

    

R g =
dµ /dr( )

lp

dµ / dr( )pp

=
2(l1 + 3

4
l2 )

3(l1 + l2)
=

2

3

1 + 3

4
Ra

1+ Ra

 

 

 
 

 

 

 
 (30)

When   Ra →∞ , 
    
R g → 1

2
, and the parabolic potential leads to an evolution rate that is a factor of two

higher than the linearized potential. When   γ1 = γ 2 =γ , the equilibrium value of Ra is unity, and when

    Ra →1 , 
    
R g → 7

12
. It follows that the evolution times for the parabolic potential are of the order of one-

half those predicted by the linearized potential. This disparity is similar to that seen in the 2-d cases [4], and

smaller than the uncertainty in the input parameters. We presume that the approximate equations

describing the evolution of the stretched cube, Eqns. (12) and (13) will differ by a similarly small amount

from that predicted by a more exact solution. Figure 5 compares the evolution times predicted by the

three 3-d models.
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Experimental Measurements of Pore Shape Changes

The ability to model pore shape changes, and the close agreement between the results obtained

when using the linearized and continuous potential approaches to modelling provided an incentive to

perform experimental measurements of pore shape changes. The ability to produce arrays of

nonequilibrium shape pores using microlithographic methods [5, 13] was exploited.

Optical-finish (premium-grade) sapphire single crystal substrates with (0001),   {101 2},   {112 0} ,

and   {101 0}  orientations (abbreviated as c, r , a, and m , respectively) were purchased (meller optics,

Providence, RI). The orientation of each sample was confirmed to be within ±2° of the specified

orientation through analysis of x-ray back reflection diffraction patterns (Laue method).

A chromium mask containing a square array (250 × 250) of pores individually 16 µm × 16 µm

with a 16 µm edge-to-edge spacing was fabricated. Using this mask, 62,500 identical surface cavities with

a final size of ≈20 µm × 20 µm × 0.5 µm were lithographically introduced onto c, r, a, and m orientation

sapphire substrates 12.7 mm × 12.7 mm × 0.38 mm thick.

A second substrate of identical orientation was placed upon the etched surface and aligned to

produce, at worst, a very low angle misorientation (≤1°) twist boundary. The two sapphire substrates

were bonded to one another in a graphite heating element, vacuum hot press at 1300°C with an applied

pressure of 9 MPa sustained for 1 h; the ambient gas pressure during bonding was ≈2.6 × 10-3 Pa.✠  Thin

high-purity BN plates were placed between the assemblies and the graphite spacer to avoid reaction

between them. Very little adjustment of the pore shape occurred during bonding.

                                                                        
✠  One potential drawback of studying internal voids produced by this method is that one is unsure of the atmosphere in
contact with the pore surfaces. The two bonding surfaces are placed in contact in an air environment, and thus, air should be
present in the cavities. A pressure is applied to the two substrates to bring them into close contact, and to establish good
alignment of the specimens. The seal is not hermetic, and thus, one expects that the air inside at least some of the surface
cavities escapes during pumpdown of the hot press, during heating and prior to complete bonding (sealing) of the interface. At
least some of the pores might be expected to have an internal atmosphere dictated by the hot pressing environment (vacuum,
graphite die) at the time the pore is sealed. If the gas composition was a variable, and it caused important differences in the
behavior, differences between the behavior of cavities nearer the sample edge (and more likely to be evacuated) and those in the
center of the sample might be expected. No such differences have been observed. However, we must acknowledge the
possibility that the composition of the gas within our pores may differ from that in other experiments [3] where crack healing
in air is used to produce pores.
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The external surfaces of bonded assemblies were polished using 6-µm diamond paste to render

the samples transparent for optical microscopy. Specimens were placed on a high-purity alumina block

(99.997%) in an alumina crucible (99.7%) which was pre-baked in vacuum (<1.3 × 10-3 Pa) at 1900°C

for 20 h prior to usage to remove volatile impurities. Annealing was performed in a Mo mesh heating

element furnace (centorr) under vacuum (<1.3 × 10-3 Pa) at 1900°C. Samples were initially annealed

for 4 h and then for an additional 12 h. The morphological evolution of pores was monitored using

optical microscopy. The m-specimen was annealed for yet an additional 8 h, and then ground using a

high-speed grinding wheel. The plane containing the pores was inclined slightly to the plane of grinding.

This made it possible to expose a portion or strip of the pore array, while maintaining the other pores fully

enclosed by sapphire. Grinding damage was removed by polishing using 1-µm diamond slurry on a

12-inch diameter solder plate with a tri-pole specimen holder (logitech, pm4). This polishing method

causes much less damage to the pore edge than any other polishing methods examined, and made detailed

observation of the pore shape possible. The pores exposed in this manner were examined using both a

scanning electron microscope (isi ds130) and an atomic force microscope (park instrument) to

identify the facet structure.

Results and Discussion

Figures 6(a)-(e) show the morphological evolution of internal pores in sapphire substrates of

various surface orientations in response to annealing at 1900°C. Figure 6(a) shows the initial “as-bonded”

pore array composed of ≈20 µm × 20 µm pores etched to a depth of ≈0.5 µm common to each sample.

The pore shapes that develop on c , r, a, and m -oriented substrates after total anneal times of 4 and 16 h at

1900°C, are shown in Figures 6(b)-6(e), respectively. It is evident that the substrate orientation, and thus

the crystallography of the surface that dominates the initial pore shape, has a profound effect on the rate

and nature of the morphological evolution.

Of the orientations examined, the m-orientation specimen evolved most rapidly and

homogeneously. A bright region in an optical micrograph of a pore indicates the presence of a plane
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perpendicular to the incoming light, and thus parallel to the original substrate surface. The disappearance

of this bright spot is taken as an indication that the original substrate surface has disappeared, and is thus

unstable. The m -plane appears to disappear within the first 4 h of annealing. In contrast, for the c-

orientation substrate, there was minimal morphological change even after 16 h at 1900°C. The r- and a-

orientation specimens showed intermediate “average” rates of evolution, but the evolution is

inhomogeneous. A region of bright contrast persisted in both r- and a-orientation specimens, even after

16 h at 1900°C. Collectively, these observations suggest that the c, r, and a-planes are low-energy surfaces

and part of the Wulff shape of undoped alumina; the rapid disappearance of the m -plane suggests that it

is not a component of the equilibrium shape.

The pore shape in the m -oriented specimen appeared to be closest to being equilibrated after 4 h

at 1900°C; no significant change in the morphology was apparent when the annealing time was increased

from 4 to 16 h. Figure 7 shows an sem micrograph of an exposed ribbon of pores, and a higher

magnification micrograph of the pore shape on an m-oriented substrate after 24 h at 1900°C. Several

facets are evident; the c and a-facets which are perpendicular to the m-plane intersect the plane of polish.

Figure 8 shows the results of an afm line scan used to confirm that facets observed inside the pore

correspond to r and a-planes. The m-oriented specimen was also cut perpendicular to the c-orientation.

Figure 9 is an sem micrograph of the pore shape as viewed along the [0001] direction; the plane at the

base of the pore is a c-plane. The pore morphology provides further evidence that the c, r , and a-planes

are components of the Wulff shape of alumina, while the m -plane is not. It also indicates that 24 h at

1900°C is insufficient to achieve an equilibrium shape. Since alumina has rhombohedral symmetry, six

identical a-facets should be observed, and there should be 3-fold symmetry along the c-direction.

However, two of the six a-facets intersecting the plane of polish are much smaller than the other four, and

the 3-fold symmetry is missing. One possible explanation of the observations is that the m-plane quickly

decomposed into r- and a-planes, and once the m-plane was consumed, the evolution rate decreased

substantially.

The significant differences in evolution rates among the various samples (orientations) examined

could indicate that   δ sDs  varies substantially with surface orientation, or that mass transport on stable
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low-index planes of alumina is controlled by salk. To examine the latter hypothesis, pore evolution rates

for the different orientation surfaces were compared with the results predicted for diffusion control by the

3-d “stretched cube” analysis presented earlier. In order to encompass the full (and very wide) range of

surface diffusivities in the literature, values of   Ds  corresponding to the highest, average and lowest values

for nominally pure alumina [19], 1.23 × 10-7, 1.60 × 10 -9 and 2.92 × 10-10  m2/s, respectively, at

1900°C, surface energy,   γ1 ≈ γ 2  = 1.0 J/m2, and effective molecular volume, Ω  = 2.11 × 10-29  m3,

were used as input parameters for the simulations. The initial pore geometry in the simulation was

adjusted to conform to the current experimental conditions.

Before comparing the results and predictions, several difficulties and limitations to such a

comparison should be noted. Although the geometric parameters that define the initial pore geometry can

be adjusted to conform to the current experimental conditions, the actual facet structure of the pores

differs from that in the simulation, as is evident in Figures 7-9. The 2-d analyses presented previously [4],

show that the cavity size and temperature primarily affect the evolution times; the details of the initial

cavity shape and the nature of the ultimate equilibrium shape have only a modest effect. The 3-d analyses

for the stretched cube and stretched cylinder in this paper similarly suggest that when the initial cavity

geometry is very far from equilibrium, and the evolution times of cavities of identical volume but different

shape are compared, the shape effects are relatively minor. We assume that the same holds in the present

case. In contrast, changes in the rate-controlling mechanism may produce very large effects.

The width of 20 representative pores (out of 62,500) was measured from a photograph for each

specimen, and the     l2 l1  (= w/ d)  ratio was calculated. The projected area of the pore was approximated

as a square cross section of equivalent area when viewed perpendicular to the bonding plane. The edge

length of the square, w, was calculated. The cavity depth d was calculated by assuming that the pore

volume was conserved. Figure 10 compares the results of these measurements with the predictions of the

simulation. Error bars indicate standard deviations for each set of measurements.

It is clear that if one insists on an interpretation of the results in terms of surface-diffusion-

controlled evolution   δ sDs  would have to vary substantially with surface orientation. Moreover, to

rationalize the observed time-dependence of the     l2 / l1 ratios would require a diffusivity that decreases with
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time. Regardless of the substrate orientation, the experimental pore shape trajectories cross those derived

for a constant   Ds . This is particularly noticeable for the c-oriented substrate; the     l2 / l1  ratio evolves from

40 to ≈26 during the first 4 h, and then appears essentially unchanged during further annealing. For the

m-oriented substrates, the     l2 / l1  ratio evolves from 40 to ≈3 during the first 4 h, and from ≈3 to ≈2.7

during an additional 12 h of annealing. From the standpoint of kinetics, the morphological evolution is

nearly completed in the first 4 h of annealing even though from an energetic point of view the shapes

remain far from equilibrium [2, 3], and a driving force for mass transport still exists.

An alternative, and we believe, more plausible explanation of the observations is that the process is

diffusion-controlled only during the very initial stages of evolution (possibly for anneals <4 h for some

orientations), and gives way to -dominated behavior in the later stages. The classic work of Burton,

Cabrerra and Frank [20] on the growth of facetted crystals pointed out that the motion of a facet will

require the nucleation and growth of atomic height patches on an advancing surface, and addressed the

role that screw dislocations could have on facilitating facet motion. Willertz and Shewmon [21]

addressed this nucleation problem in an effort to rationalize the sluggish migration rates of helium-filled

voids in gold and copper foils. They concluded that the nucleation of steps on a facetted surface could

limit the migration rate, and account for bubble velocities that were lower than expected from an analysis

assuming surface diffusion controlled migration. More recently, Mullins and Rohrer [22] treated the

nucleation problem in the context of volume-conserving shape changes of facetted crystals. Their results

suggest that for facets larger than ≈1 nm in size, nucleation of a new facet layer will limit the evolution rate

unless the facet is intersected by a dislocation. The same issues are relevant in interpreting the results of the

present experiments.

Lithography provides the opportunity to systematically assess the sensitivity of the observed

behavior to the orientation of the sapphire substrate. A major factor affecting the kinetics is believed to be

the stability of the surface that dominates the as-bonded pore shape. Both the results of Choi et al. [3] at

1600°C and the studies of Kitayama [2, 14] at 1600° and 1800°C have shown that the c(0001), r   {10 1 2}

and a  {112 0}  planes are part of the Wulff shape of undoped sapphire. The presence/formation of c-, r-,

and a-orientation facets in cavities originally etched into the m -plane, Figures 7 and 9, suggests that these
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surfaces remain part of the Wulff shape at 1900°C. If this is the case, then when cavities are etched into

c-, r-, and a-orientation substrates the dominant bounding surfaces of the etched-in pore are stable. These

bounding surfaces are likely to contain irregularities or defects due to nonuniform ion beam etching and

polishing scratches, and a terrace-and-step structure may evolve due to small miscuts of the wafer with

respect to the ideal orientation. These surface defects (steps) will provide sources and sinks for adatoms

during the initial stages of evolution.

For such vicinal surfaces, the morphological evolution will reflect the dynamics of surface steps.

During annealing, perturbations in the stable surface will have a driving force to decay. Duport et al.

[23, 24] have considered the role of critical fluctuations in a related problem, the decay of grooves cut into

a surface with singular orientation. In this case, profile decay requires the development of sufficiently large

fluctuations in the topmost layer to form isolated loops or patches of atoms on a stable facet. The

shrinkage of this loop, and peeling off of atoms from the topmost layer leads to profile decay. This process

is slow in comparison to diffusion-controlled decay. Surnev et al. [25] have performed elegant experiments

in which a periodic surface profile was etched into a Au(111) vicinal surface and the profile decay was

monitored. It was shown that varying the profile orientation with respect to the step direction on the

surface resulted in significantly different decay kinetics. A discussion of the role of atomic steps and the

miscut in the evolution of periodic surface modulations can be found in the review by Blakely et al. [26].

For nonequilibrium shape cavities introduced into c-, r-, and a-orientation substrates one can then

expect that three processes with different spatial and temporal characteristics will be active. At a spatial

scale smaller than the dimensions of the large ≈20 µm × 20 µm facet, there will be a driving force to

“smooth” any perturbations that may exist, and this will reduce the spatial density of ledges and kinks.

When considering profile decay on a macroscopic sample, eliminating the ledge structure due to a miscut

would require long-range mass transport, and thus, the ledge structure persists. In the present case,

migration of ledges over distances less than or equal to the pore dimension would reorient the surface, and

eliminate the ledge structure due to a miscut. Once flat and stable facets are formed, adjusting the aspect

ratio of the pore requires the nucleation of patches of adatoms on surfaces that must advance towards the

pore center, and the nucleation of critical size cavities in surfaces that must recede from the pore center as
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the equilibrium shape is approached. These nucleation processes are likely to occur at a low and declining

rate as the driving force for morphological change decreases.

Heffelfinger et al. [27] have recently examined the evolution of surface structure on (0001)

α-alumina single crystals by annealing vicinal single crystals at 1400°C for varying periods of time and

characterizing the surface using afm. The results indicate that during the early stages of evolution

(10 min), steps of height c/6 (≈0.2 nm) develop. With further annealing (≤8 h), bunching of these steps

occurs, leading to the formation of steps of height c or multiples of c . The facet junction density decreases

substantially during the first few hours of annealing at 1400°C [28]. These observations suggest that at

1900°C step-bunching should be complete in a very short time. As a result, in the absence of some other

source of ledges and steps, the aforementioned nucleation and growth processes would be necessary for

further evolution. This scenario is consistent with the general trend of an apparent surface diffusivity that

is decreasing with increasing anneal time, and would explain the behavior of pores etched into

c-orientation substrates particularly well. The apparent   Ds for pores etched into the c-orientation

substrates ultimately falls below even the lowest estimate of   Ds  at 1900°C.❖

Pore shape evolution in r- and a-oriented specimens is inhomogeneous. Slowly evolving pores

may be subject to the same nucleation process described before; the more rapidly evolving pores may

benefit from a structural defect that provides a source of steps. Lemaire and Bowen examined the

migration of gas-filled pores in KCl due to an imposed temperature gradient [29]. For small pores,

≤50 µ m, a size dependent probability of motion was observed; pores greater than ≈50 µm in width were

always mobile. Olander et al. [30] examined the migration of liquid-filled inclusions in KCl and NaCl

single crystals, and found that inclusions smaller than 10 µm in width were essentially immobile. In both

cases, these behaviors were explained by relating the rate of mass removal/addition to the density of

dislocation intersections with the facetted cavities/inclusions. (In the work of Willertz and Shewmon

[21], the cavities were <0.1 µm in radius.) The extension of these results to the present case would suggest

                                                                        
❖  It is interesting to note that the void migration rates observed in gold and copper foils [21] implied surface diffusivities that

were 10-4–10-5 and 10-1–10-2 times those measured by independent means for gold and copper, respectively.
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that the more rapidly evolving pores observed in r- and a-oriented specimens are intersected by a larger

number of dislocations, and thus have a higher step density. Those cavities that evolve more slowly would

have fewer (or no) dislocation intersections. Dislocation densities were not measured as part of this study,

and would most likely be altered by the bonding process. However, a dislocation density of

2.5 × 105/cm2 would be required to have an average of one dislocation intersecting each 20 µ m × 20 µm

face. If the dislocation density is of this order, substantial variations in evolution rates could be expected

due to statistical variations in the number of intersections.▲ As the     l2 / l1  ratio decreases, and the projected

pore area decreases, so also does the probability of intersecting a dislocation. One can then anticipate that

if a pore separates from an intersecting dislocation, the evolution rate will decrease. (If this correctly

explains the observations involving stable planes, then it would imply that either the dislocation

intersection density in c-oriented samples is much lower, or that some other process limits the evolution

rate in these samples.)

Pore shape evolution in m -oriented substrates was rapid and uniform. The apparent   δ sDs  during

the early stages of evolution exceeded the average value at this temperature, and then decreased with

increasing anneal time. The results of Choi et al. [3], and the studies of Kitayama [2, 14] demonstrate that

the m   {10 1 0}  plane is not part of the Wulff shape of undoped sapphire between 1600° and 1800°C.

Observations by Heffelfinger et al. [28, 32] indicate that the m   {10 1 0}  plane decomposes into a fine

spatial scale hill-and-valley structure comprised of other low-index planes at 1400°C. Experiments by

Marks [33] have confirmed these 1400°C observations, and shown that the hill-and-valley structure

persists during anneals at 1600°C. Similar changes at 1900°C would lead to structural disruption of the

dominant bounding plane.

The detailed afm studies by Heffelfinger and Carter [28] indicate that decomposition of the

m   {10 1 0}  plane involves the nucleation of individual facets. These facets facilitate the nucleation of

additional adjacent facets, causing the formation of packets of facets. The impingement of facet colonies

that are out of phase leads to facet junction formation. One infers from the present study that this hill-

                                                                        
▲ Mader and Rühle [31] have reported a dislocation density of ≤104/cm2 in unbonded sapphire wafers.
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and-valley structure facilitates rapid evolution of the pore shape. Initially, facet junction motion [28], a

higher facet layer nucleation rate on nm-scale facets [22], and a higher dislocation intersection density may

all contribute to the high evolution rate. However, the facet junction density decreases rapidly at 1400°C

[28], and a more rapid decrease would occur at 1900°C, contributing at least in part to the rapid decrease

in evolution rate. The observed evolution rate decrease may also partly be due to the development of

larger stable facets whose motion is nucleation limited as the pore approaches its equilibrium shape.

Summary

The shape evolution kinetics of an idealized, completely facetted, isolated crystal/pore by surface

diffusion have been modelled. The modelling approach extends that applied previously to 2-d geometries

[4]. As was the case for the 2-d geometries, the details of the crystal/pore shape do not have a major

impact on the predicted behavior provided that the shapes remain far from the equilibrium shape. When

the crystal/pore volume is fixed, and the initial aspect ratio is the same, factor of two differences in

evolution time owing to shape differences are suggested. The approximations made in modelling the

potential gradient appear to also introduce roughly factor of two errors, and predict more sluggish

evolution than models [1, 3] that specify the spatial dependence of the surface potential.

Experimental studies were performed in which lithography was used to introduce arrays of

nonequilibrium shape pores into sapphire substrates with known orientations. During high-temperature

annealing (1900°C), pore shape evolution rates varied significantly with the orientation of the sapphire.

The most rapid evolution occurs when the surface is unstable and is expected to evolve into a hill-and-

valley structure. In this case, the surface may be macroscopically planar, but rough on a microscopic scale,

thereby providing a high density of sites at which mass addition or removal occurs readily. For evolution of

pores etched into stable low-index surfaces of alumina, interpreting the results in the context of a surface-

diffusion-controlled process yields widely varying and time-dependent values of the apparent surface

diffusivity. Comparison of the experimental results with the predictions of the modelling work suggests

that  plays an important role in surface mass transport on stable low-index surfaces of alumina.
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Figure 1 Illustration of geometry and parameters used in modelling a “stretched cube”.
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stretched cylinder. The initial aspect ratio is chosen to be 40, and the volume i s  held fixed

at   2 × 10−16m3  to match the experimental conditions.

Figure 6 Optical micrographs of internal pores in sapphire of varying orientation, a) after bonding,

but prior to annealing, and b)-e) after anneals of 4 h and 16 h at 1900°C for samples of

the indicated surface orientations.

Figure 7 a) Lower magnification sem micrograph of a strip of pores, part of a larger array etched

into an m -plane substrate, and exposed by polishing after 24 h anneal at 1900°C, and b)

higher magnification sem micrograph of an individual pore showing that c , r and a-type

facets have formed during annealing.

Figure 8 Illustration of the use of afm to determine the inclination angles made by facets within

pores with respect to the surface of known orientation and known directions within this

plane. The pores were originally etched into the m-plane and annealed for 24 h at

1900°C. Both r and a facets were identified from the inclination angles.
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Figure 9 sem micrograph of pore etched into the m -plane, but sectioned and viewed along the c-

direction after 24 h annealing at 1900°C. The six l ines correspond to the orientation of

the a-planes, and the central facet is a c-facet. It is evident that the pore does not yet have

the symmetry of an equilibrated pore.

Figure 10 Plot of computed times to reach specific     l2 / l1( ) ratios at 1900°C as a function of   δ sDs ,

and comparison with experimental data. (Selected data points are shifted slightly on the

time axis to allow better resolution of the error bars; all data are at 4 h and 16 h.) The

predictions are for a stretched cube, as described by Eqn. (13).
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Figure 1 Illustration of geometry and parameters used in modelling a “stretched cube”.
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Figure 2 Comparison of the aspect ratio (Ra) dependence of length     l1 for the case of a 2-d and
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displacements of the facet necessary to achieve a given value of Ra is also plotted.
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Figure 6 Optical micrographs of internal pores in sapphire of varying orientation, a) after
bonding, but prior to annealing, and b)-e) after anneals of 4 h and 16 h at 1900°C for
samples of the indicated surface orientations.
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(a)

(b)

Figure 7 a) Lower magnification sem micrograph of a strip of pores, part of a larger array
etched into an m-plane substrate, and exposed by polishing after 24 h anneal at
1900°C, and b) higher magnification sem micrograph of an individual pore showing
that c, r and a-type facets have formed during annealing.
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Figure 8 Illustration of the use of afm to determine the inclination angles made by facets
within pores with respect to the surface of known orientation and known directions
within this plane. The pores were originally etched into the m-plane and annealed for
24 h at 1900°C. Both r and a facets were identified from the inclination angles.
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Figure 9 sem micrograph of pore etched into the m -plane, but sectioned and viewed along the
c-direction after 24 h annealing at 1900°C. The six l ines correspond to the
orientation of the a-planes, and the central facet is a c-facet. It is evident that the pore
does not yet have the symmetry of an equilibrated pore.
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Figure 10 Plot of computed times to reach specific     l2 / l1( ) ratios at 1900°C as a function of

  δ sDs , and comparison with experimental data. (Selected data points are shifted
slightly on the time axis to allow better resolution of the error bars; all data are at 4 h
and 16 h.) The predictions are for a stretched cube, as described by Eqn. (13).


